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Abstract

The treatment of real investments parallel to 1nancial options if an investment is irreversible
and facing uncertainty is a major insight of modern investment theory well expounded in the
book Investment under Uncertainty by Dixit and Pindyck. The purpose of this paper is to
draw attention to the fact that many problems in managerial decision making imply Bellman
equations that cannot be solved analytically and to the di6culties that arise when approximating
the required value function numerically. This is so because the value function is the saddlepoint
path from the entire family of solution curves satisfying the di7erential equation. The paper
uses a simple machine replacement and maintenance framework to highlight these di6culties
(for shooting as well as for 1nite di7erence methods). On the constructive side, the paper
suggests and tests a properly modi1ed projection algorithm extending the proposal in Judd (J.
Econ. Theory 58 (1992) 410). This fast algorithm proves amendable to economic and stochastic
control problems (which one cannot say of the 1nite di7erence method).
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Without doubt, the book of Dixit and Pindyck (1994) is one of the most stimulating
books concerning management sciences. The basic message of this excellent book
is the following: Considering investments characterized by uncertainty (either with
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respect to the investment costs or the value of the project) and irreversibility, standard
calculations of the (expected) net present value (NPV) of pro1ts can lead to highly
misleading suggestions, because waiting has a potentially positive value. For example,
a project may be pro1table on a NPV basis, but waiting until the investment costs
fall su6ciently avoids the potential loss (included with a corresponding probability in
the calculation of expected present value) and thus may increase pro1ts. The basic
fault of the standard (or orthodox as Dixit and Pindyck prefer to say) NPV method is
the implicit, tacit but implausible assumption that a project (e.g., an additional plant,
capacity expansion) must be either carried out today or cannot be carried out at all.

The purpose of this paper is not to question this important insight but to draw
attention to the following fact: Although all what a stochastic dynamic optimization
problem requires is to solve “a non-linear di7erential equation, which needs numeri-
cal solutions in most cases”, Dixit (1993, p. 39 for a particular example), (i) standard
shooting algorithms using either an Euler or higher order algorithms such as the Runge–
Kutta algorithm are likely to fail to approximate the required solution, (ii) 1nite dif-
ference methods which are applied in valuing 1nancial options su7er from very slow
convergence and (iii) collocation methods (such as the Chebyshev projection method
proposed in Judd, 1992) o7er a fast and robust alternative.

Real option analysis reduces to the valuation of American put or call options. How-
ever, managerial decision-making is in many cases more complex than 1nding the
optimal exercise strategy of an American style options contract. While 1nancial option
valuation usually assumes a complete and arbitrage free market in which the individual
investor is a price taker, managerial decision-making often inJuences the dynamics of
the state variable. This generally results in non-linear di7erential equations that have to
be satis1ed by the value function of the corresponding real option. The non-linearity
usually prevents analytical, closed form solutions and, furthermore, leads to poor con-
vergence behavior of shooting algorithms. Tree methods and 1nite di7erence methods
can be adapted, 1 but require extensive computations if the real option’s time to ma-
turity is large (or in1nite as in many applications), because these methods have to
evaluate huge trees.

This paper is organized as follows. Section 2 introduces a simple example, the opti-
mal shutdown of a machine, which is in fact taken from Dixit and Pindyck (1994) and
which allows for an explicit analytical solution. This example is used to highlight the
problems of standard numerical procedures. Almost all genuine optimization problems
(except for the stopping problems to which Dixit and Pindyck (1994) and most follow
ups con1ne by and large their analysis) lead to non-linear di7erential equations that
do not allow for an analytical solution. This fact excludes analytical techniques and
restricts, according to the results of Section 2, the application of standard numerical
routines. Section 3 extends the example of optimal shutdown by allowing for continu-
ous maintenance, where the Bellman equation leads to a non-linear di7erential equation.
Section 4 sketches an algorithm using projection methods and Chebyshev polynomials

1 For an introduction to the binomial tree method in 1nancial options valuation see Cox et al. (1979), the
trinomial tree method is studied, e.g., in Kamrad and Ritchken (1991), and 1nite di7erence methods in this
context are presented in Brennan and Schwartz (1977, 1978) and Hull and White (1990).
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based on Judd (1992) that is applied in Section 5 to the optimization problem intro-
duced in Section 3.

2. Optimal shutdown – no maintenance

The following framework – the optimal shutdown of a machine (or any kind of
a pro1t generating equipment) – serves as pars pro toto to highlight the di6culties
in calculating the value function using standard di7erential equation algorithms in the
absence of the analytical solution of the Bellman di7erential equation.

Let �(t) denote the pro1t Jow in period t from using a particular equipment and it
is assumed that this pro1t follows a Brownian motion (with drift a¡ 0)

d�(t) = a dt + � dz; �(0) = �0: (1)

The deterministic part, a dt, states that the expected change follows a linear deprecia-
tion. The second term, � dz, adds a stochastic element to the actual evolution of the
pro1ts in which dz is the increment of a standardized Wiener-process z and the pa-
rameter � denotes the instantaneous standard deviation of the pro1t Jow. Fig. 1 shows
a few realizations of this process for the base case parameters in Table 1, all starting
with a pro1t of $1, an average depreciation of 10 cents/a (thus expected lifetime equals
10 years) and a standard deviation of 20 cents/a. One of these realizations follows by
and large the expected evolution, one shows even increasing pro1ts, while two others
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Fig. 1. Four realizations of the stochastic process (1) and the linear trend for the base case parameters,
a = −0:1; � = 0:2, and �0 = 1.
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Table 1
Base case parameters

a −0.1
� 0.2
r 0.1
�0 1

lead to de1cits already after 3 and 6 years, respectively, yet one of them immediately
returns to be pro1table which highlights that de1cits are not irreversible.

It is assumed that equipment that is once removed cannot be reinstalled and this ir-
reversibility requires a forward looking behavior when deciding to eliminate the equip-
ment. Let F and r denote the present value of the claim on the pro1t Jow � (i.e.,
the value function of the equipment) and the discount rate respectively. 2 Then F is
determined by

F(�; t) = max
{T}

E
∫ T

0
e−rt�(t) dt; (2)

where T is a random stopping time at which the machine is eliminated (at a salvage
value of 0).

The Bellman equation for this optimal stopping problem is

F(�; t) = max{0; � dt + (1 + r dt)−1E[F(�+ d�; t + dt)]}: (3)

That is, the value function F(�; t) describes the maximum expected present value of
pro1ts given the current Jow is �. The 1rst argument, 0, applies if the machine is
eliminated, otherwise the second argument describes the value from continuation. Thus,
the value F of the machine is a stochastic process that is determined endogenously
contingent on the realization of the process �, so that F(�; t) = F(�), because there
is no explicit dependence on (calendar) time t. The 1rm’s optimal decision can be
characterized by a threshold �∗, such that it is optimal to use the equipment (or plant)
as long as �¿�∗, and to shut it down when the pro1t Jow hits his threshold for the
1rst time. 3

In the domain of continuation the value function F has to satisfy the Bellman equa-
tion 4

rF = �+ aF� + 1=2�2F��: (4)

2 The uncertainty in the evolution of the pro1tability of a single machine has an important idiosyncratic
component that cannot be replicated by a portfolio of traded 1nancial contracts. This prevents the application
of preference free valuation techniques, and therefore, we assume that the decision maker is risk neutral.

3 i.e., the random stopping time T is determined by T = inf{�¿0|�(�)6 �∗}.
4 Eq. (4) is a special case of the general Bellman equation which will be derived in Section 3. We use

subscripts to indicate di7erentiation instead of primes in order to refer to the argument and because the
Bellman equation is in general a partial di7erential equation.
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Therefore, the so far unknown value function F(�) is the solution of a second order
di7erential equation that requires corresponding boundary conditions: The salvage value
is zero, therefore

F(�∗(t)) = 0: (5)

Of course, a highly pro1table plant will not be shut down 5 and moreover is unlikely to
be abandoned in the near future due to properties of the di7usion process (1). Therefore,
the value of the opportunity to shut down vanishes for � → ∞. Consequently, the value
function must converge to the value of a unit that cannot be mustered out, even if it
produces losses. This implies a boundary condition on the upper side (i.e., for very
large pro1tability) 6

lim
�→∞ [F(�)− (a=r2 + �=r)] = 0; (6)

where the term between parentheses is the value of a perpetually operating unit (see
Appendix A).

Condition (5) is applied at a free boundary �∗, because the 1rm is free to choose
the threshold level at which to stop. The 1rst order condition of optimal choice of the
exit threshold �∗ is

F�(�∗(t)) = 0: (7)

For a derivation of this ‘smooth pasting’ condition see, e.g., Dixit (1993).
Given these three conditions (5)–(7), this simple stopping problem can be solved

analytically which is not possible for the extended model in Section 3. The analyti-
cal solution of the pure stopping problem serves as a benchmark to demonstrate the
problems of standard numerical procedures to approximate the value function and to
compute the optimal policy (i.e., the optimal stopping threshold �∗).

The general solution of the inhomogeneous, linear di7erential equation (4) is:

F(�) = [(a=r2) + (�=r)] + c1 exp(�1�) + c2 exp(�2�): (8)

The term between the squared brackets in (8) is the value if the Jow cannot be stopped,
which is a particular solution of (4) (di7erentiation proves this). �1¿0 and �2¡ 0
denote the roots of the characteristic polynomial of the corresponding homogeneous
di7erential equation:

�12 = (−a±
√
a2 + 2�2r)=�2: (9)

The value of the machine given in (8) can therefore be interpreted as the sum of the
value of the perpetual pro1t Jow (the value between squared brackets) and the value
of the option to terminate this Jow when the pro1t Jow hits �∗ (characterized by the

5 Generally, the 1rm has also the opportunity to abandon production at some upper threshold. However,
the fact that a productive machine is never shut down pushes this upper threshold towards in1nity; see
boundary condition (6).

6 See Appendix A for a derivation of the value of the perpetual Jow, a=r2 + �=r.
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two exponential terms). Since �1¿0, boundary condition (6) can only be satis1ed for

c1 = 0: (10)

This means that the option to shut down is worthless for a very high pro1table
unit, which is an alternative way to state that it is not optimal to close it. c1 �=0
would add exponentially growing gains (or losses, depending on the sign of c1) that
are inconsistent with the fundamentals. Economists call this the exclusion of ‘Ponzi-
games’, or of speculative bubbles. Hence, the closed form solution of the value function
is

F(�) =




a
r2

+
�
r
+ c2 exp(�2�) for �¿ �∗;

0 for �¡�∗:
(11)

Application of the boundary condition (5), the optimality condition (7), and the
parameters of Table 1 to (11) reproduces the result quoted in Dixit and Pindyck (1994),
�∗ = −0:17082039 : : : and c2 = 10:1188 : : : : This states that an equipment producing
up to a 17% loss (compared with the initial pro1t of $1) should be kept operating.
The reason is that a shutdown is irreversible, but the machine might still yield pro1ts
in the future (see the trajectory in Fig. 1 which after losses around t ≈ 6 reverses to
pro1ts).

A 1rst numerical approach is a modi1ed shooting method employing a Runge–Kutta
algorithm. 7 Starting at a guess of �∗ we apply conditions (5) and (7) at this boundary
and compute the corresponding value function using a Runge–Kutta algorithm. The
asymptotic behavior required by condition (6) serves as a criterion for the quality of
the guess. Since the guess certainly deviates from the actually optimal threshold, the
implicitly determined constant c1 deviates from zero. Hence, this numerical solution
contains an exponentially growing function and will thus not show the asymptotic be-
havior, no matter how good the guess is. That is, the value function is the (unique)
saddlepoint path from the entire family of solutions of this di7erential equation. While
an analytical solution allows picking the saddlepoint path (this is essentially the tech-
nique applied in Dixit–Pindyck (1994) that amounts here to set c1=0), it is impossible
to determine a saddlepoint path by guessing initial conditions and this is shown in
Fig. 2 for two ‘good’ guesses.

The sign of the deviation from the asymptotic solution indicates whether the guess is
above or below the actual optimal threshold and this allows applying search algorithms.
Due to the linearity of the di7erential equation, this shooting approach converges to
the analytically determined optimum �∗. However, the quality of the approximation of
the value function is restricted to a small interval (say �¡ 3) even if the computed
threshold deviates from the optimum by less then 10−15. Fortunately, this poor approx-
imation of the value function in Fig. 2 is of minor relevance for this stopping problem,

7 The standard shooting method is formulated for boundary value problems where the value of the function
is given at the boundaries but the initial slope has to be determined, see e.g., DeuJhard and Bornemann
(2002). Our problem is a free boundary problem. Both, the value and the slope of the value function are
given (see conditions (5) and (7)) at free boundary, �∗, which has to be determined.
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Fig. 2. Value function F(�) and numerical solutions of the di7erential equation (4) with the boundary
conditions (5) and (7) and guesses for �∗ (a = −0:1; � = 0:2; r = 0:1).

because the value function itself is of no interest for decision making, but only the
threshold �∗.

The second numerical approach is the explicit 1nite di7erence method proposed in
Brennan and Schwartz (1977) for the valuation of American style 1nancial options.
This method computes the value function at discrete points in the state/time space
(analogous to tree methods). Starting from a terminal condition at maturity of the
contract it works backwards in time applying 1nite di7erence approximations for the
derivatives. To deal with the perpetual real option to shut down, we have 1rst to
reformulate the problem (for details see Appendix A) by adding an arti1cial expiration
date at some ST . That is, it is assumed that the 1rm is allowed to shut down the
machine only before ST , if the machine is not eliminated before ST then it has to run
forever such that the corresponding terminal condition is F(�; ST )=max{0; a=r2 +�=r}.
Su6cient accuracy requires small increments in time and state, and approximating the
stationary solution calls for a large ST (such that the obtained solution is ‘invariant’ with
respect to the choice of ST ). These requirements make the application of 1nite di7erence
methods computationally expensive. Fig. 3 shows the convergence behavior of this
method by plotting the absolute error of the determined exit threshold as a function of
the computing time for several choices of increments (the calculations are performed
using GNU gcc on an AMD 1200 MHz PC running SuSE Linux 7.3). The time to
maturity is set to ST = 100a. The number of time steps ranges from 1000 to 512000.
The step size in the state space is set to U�=�

√
Ut, in which case the 1nite di7erence

method is equivalent to a trinomial tree approach. We see that calculation times of up
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Fig. 3. Absolute error of the exit threshold determined by the 1nite di7erence method versus computing
time.

to 6:5 h have to be accepted in order to approximate the exit threshold by an error less
than 10−4 (measured not against the true �∗ but against the approximation obtained
for discretizing time up to ST into 210103 steps to account for the limit imposed by the
choice of ST , denoted �1024000 in Fig. 3; the ‘true’ error is even larger). Of course, one
can speed up the convergence of 1nite di7erence methods (e.g., using the Richardson
extrapolation), but the convergence behavior of the projection approach presented in
Section 4 is superior even if the 1nite di7erence method could be accelerated by several
orders of magnitude.

3. Optimal maintenance and shutdown – model

The pro1t obtained from the operation of a machinery depreciates linearly at the
rate a, but this depreciation can now be reduced by care, maintenance, repair, etc.,
denoted u. However this maintenance is costly, C(u); C′¿ 0; C′′¿0. Although it is
plausible to assume that the costs become very large if maintenance tries to stop the
natural decay completely, i.e., C→∞ for u→− a, we assume for reasons of simplicity
quadratic costs, C(u) = 1=2cu2. In addition, the same stochastic term as in (1) a7ects
the evolution of pro1t Jow �, see (13). Summarizing, allowing for maintenance yields
the following dynamic, stochastic optimization problem:

max
{u(t); t∈[0;T ];T}

E
∫ T

0
e−rt

(
�(t)− 1

2
cu2(t)

)
dt; (12)

d�= (a+ u) dt + � dz: (13)
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The Bellman equation for this problem (12) and (13) is

rF = max
u

{�− 1=2cu2 + (a+ u)F� + 1=2�2F��}: (14)

The optimization on the right hand side of (14) yields the necessary and su6cient
condition C′(u) = F�, which is economically plausible: the marginal costs of mainte-
nance must equal the expected present value of marginal pro1ts. This condition can
be explicitly solved for the optimal maintenance strategy due to the quadratic cost
function 8

u∗ = F�=c: (15)

Hence, optimal maintenance depends on the derivative of the so far unknown value
function F . As a consequence, the value function must be calculated very accurately
in order to determine optimal maintenance. Substitution of (15) into (14) yields now
a non-linear, inhomogeneous, second order di7erential equation

rF = �− 1=2c(F�=c)2 + (a+ F�=c)F� + 1=2�2F��

= �+ aF� + 1=2F2
�=c + 1=2�2F��; (16)

which has to be solved subject to the two boundary conditions (5) and (7). The
transversality condition,

lim
�→∞ (F(�)− [a=r2 + 1=(2cr3) + �=r]) = 0; (6′)

is a generalization of (6). The term between the squared brackets is a particular so-
lution of (16), which corresponds to the case that the machine cannot be eliminated
irrespective of the losses it might generate (see Appendix A). At high levels of prof-
itability, the value of the machine must converge to the value of this perpetual Jow.
Despite this simple linear solution if a shutdown is infeasible, it seems to be impos-
sible (at least for us) to obtain an explicit, analytical solution of (16) that meets the
boundary conditions (5), (6′), and (7). The fact that the Bellman equation does not
allow for an analytical solution is not just a peculiar feature of our model but applies
to numerous genuine stochastic, continuous time optimizations and can be found in
several models, e.g., see Raman and Chatterjee (1995), Eq. (10) and footnote 5. As
a consequence, we cannot eliminate the ‘wrong’ exponential term since we lack the
corresponding analytical solution.

Due to the non-linearity of (16) the shooting method described in Section 2 fails
to converge to an optimal exit threshold �∗, no matter how good the initial guess is,
and consequently the computed value function diverges almost immediately to +∞ or
−∞. In contrast to the pure stopping problem in Section 2, the value function (actually
its derivative) is required to determine the maintenance e7orts (u∗ = F�=c, see (15)).

8 Optimal maintenance u(t) is an endogenous stochastic process depending on the realization of �, u(t) =
u(�(t)).
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Fig. 4. Phase diagram of the autonomous system (17).

One possibility to overcome this failure of shooting approaches applied to non-linear
di7erential equations is to apply multiple shooting. These methods divide the state
space into several subintervals. On each of these intervals a simple shooting method
is performed, however, the derivation of the associated equation system that connects
the subintervals to ensure joint convergence is highly complex (see, e.g., DeuJhard
and Bornemann (2002) for a recent discussion of multiple shooting methods). The
1nite di7erence method introduced in the previous section converges, but again, a
su6ciently accurate approximation requires substantial computing time. However, we
show in Sections 4 and 5 that the algorithm developed by Judd (1992) is suitable to
solve stochastic, dynamic optimization problems numerically.

Finally we give a geometric explanation why direct (shooting) attempts to solve
the di7erential equation (16) subject to the boundary conditions (5) and (7) fail. To
highlight the point that the value function is a saddlepoint, consider the autonomous
and linearized part of the second order di7erential equation (16) and de1ne G = F ′,
thus G′ = F ′′:

(
F ′

G′

)
=


 0 1

2r
�2 − 1

�2 (2a+ G=c)



(
F

G

)
: (17)

The determinant of the Jacobian, −2r=�2, is negative so that the corresponding equilib-
rium (the origin in this autonomous system) is a saddlepoint. Therefore, only a single
solution curve will converge to the origin (see Fig. 4) and no matter how close we start
to the saddlepoint with a Runge–Kutta algorithm, we will not recover the saddlepoint
solution.
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4. A numerical solution based on Judd (1992)

Since shooting methods as well as 1nite di7erence approaches to solve (16) sub-
ject to the corresponding boundary conditions (5), (6′), and (7) either fail to deter-
mine the value function su6ciently accurately or are extremely slow, other means to
approximate the value function deem necessary. We follow the suggestion of Judd
(1992) to use Chebyshev polynomials and projection methods (sometimes referred to
as Chebyshev collocation approach) to approximate value functions (Judd’s paper on
endogenous growth models sketches already brieJy the application to a stochastic, but
discrete time, model). The reason why the projection method succeeds is the fact that,
in contrast to shooting methods, projection methods do not follow the Jow by locally
solving the equation. These approaches parameterize the entire problem and approxi-
mate the solution using non-linear equation solvers (like a simple Newton method in
our implementation).

A brief description of the algorithm follows; for further details concerning the pro-
jection method see Judd (1992, 1998). We choose the 1rst M Chebyshev polynomials

Tn(x) = cos(n arccos(x)) (18)

and inspect the space [Ti]i¡M
i=0 spanned by these polynomials. Using the following

orthogonal relation on [− 1; 1]

M−1∑
k=0

Ti(zMk )Tj(zMk ) =




0 i �=j
1=2M i = j �=0

M i = j = 0

i; j ¡M: (19)

where zMk (k = 0; : : : ; M − 1) are the M roots of the Chebyshev polynomial TM , we
can de1ne the projection I gM (x) of a function g on [Ti]i¡M

i=0

I gM (x) =−1=2c0 +
M−1∑
j=1

cjTj(x): (20)

The coe6cients cj are determined by

cj = 〈g|Tj〉= 2
M

M−1∑
k=0

g(zMk )Tj(zMk ): (21)

The Chebyshev Interpolation Theorem (see Rivlin, 1990) states that I gM (x) is the opti-
mal approximation (with respect to ‖:‖∞) of g by a linear combination of polynomials
of a degree ¡M . Therefore the projection I gM (x) is often called the Chebyshev inter-
polation of g. Two functions are identical with respect to their projection on [Ti]i¡M

i=0 if
all their coe6cients cj are identical. The restriction to the interval [−1; 1] is of no loss
in generality, because each function de1ned on a bounded interval can be transformed
to a function de1ned over [− 1; 1].
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Referring to the di7erential equation (16), which we have to solve, we de1ne the
functional N

N (g)(�) = 1=2�2g′′(�) + ag′(�) +
g′(�)2

2c
− rg(�) + �: (22)

If g is a solution of (16), then:

N (g) ≡ 0: (23)

The projection method simpli1es the original problem (23) by replacing the required
identity with the identity with respect to the projection on [Ti]i¡M

i=0 . That is, the
objective of the numerical method is to compute a function f̂ M (which is chosen
from [Ti]i¡M

i=0 with coe6cients ci) such that the Chebyshev interpolation N (f̂ M ) is
identical to the Chebyshev interpolation of the function that is constant zero. The cor-
responding interpolation is, of course, the constant zero itself (see (21)) and so the
coe6cients of the Chebyshev polynomials vanish. This can be expressed as

pi = 〈N (f̂ M )|Tn〉= 0; n= 0; : : : ; M − 1: (24)

Let C ∈RM denote the vector of the projection coe6cients ci of f̂ M and P ∈RM the
vector of the coe6cients pi of N (f̂ M ). P is a non-linear operator, P(C) : RM → RM,
which reduces the problem of solving the functional equation (23) to solving M non-
linear equations:

P(C) = 0: (25)

If the coe6cients of f̂ M are stable with respect to M for M exceeding a certain
threshold M (implying that high order coe6cients are of a negligible magnitude), then
f̂ M¿M is a candidate for a suitable numerical approximation of g. This candidate has
to pass further tests, see below.

The non-linear equations system (25) can be solved iteratively starting with a guess
C0 = (c0j ), e.g., using Newton’s method: Ck+1 = Ck − (ACk )−1P(Ck), where AC =
dpi=dcj = @pi=@cj is the Jacobian of the operator P evaluated at the respective point
Ck . In order to speed up convergence, we add a relaxation parameter h:

Ck+1 = Ck − h[(ACk )−1P(Ck)]; 0¡h6 1: (26)

So far, the two boundary conditions (5) and (7) as well as the transversality condition
(6′), which determine the critical level �∗ and identify the economically stable solution,
were neglected. A boundary condition like (5) or (7) can be included through a simple
modi1cation. We pick one of the ci’s (say ck) and interpret it as function of the
remaining set of coe6cients 9

ck = ck(c1; c2; : : : ; ck−1; ck+1; : : : ; cM−1); (27)

drop one of the projection conditions pi = 0 (say pl), and adapt the Jacobian

AC =
(
dpi
dcj

)
=
(
@pi
@cj

+
@pi
@ck

dck
dcj

)
; i �=l; j �=k: (28)

9 The level �∗ at which this condition has to be satis1ed is a free boundary, which is not determined a
priori.
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A consequence of this modi1cation is that only M−1 projections 〈N (f̂M )|Ti〉 are treated
by the algorithm so that convergence of Newton’s method does not guarantee that the
projection of N (f̂M ) is identical 0.

In order to compute an approximation of the economically stable solution (i.e., f̂M
which satis1es (6′)) we start with an initial guess that implies a stable evolution of
the system. This procedure – solving systems of non-linear equations – will converge
to the stable solution, at least if we start su6ciently close. We know that unstable
solutions diverge to ±∞. Hence, an initial guess that satis1es (6′), i.e., which has
the corresponding linear asymptote, should be su6ciently close to the stable solution
to guarantee convergence to the stable manifold. This was con1rmed in all our com-
putations: e.g., choosing the deterministic (thus stable) solution as our initial guess
ensured convergence; however, convergence is possible for poor guesses too. Although
convergence theorems that guarantee the quality and stability of the approximation do
not exist, this does not invalidate the projection approach. Together with a proper test,
this pragmatic ‘compute and verify’ approach is fast and robust (see Judd, 1998); af-
ter all, the numerically value function satis1es indeed the di7erential equation and the
boundary condition (approximately up to the required degree).

The projection method relaxes the condition (23) by introducing a number of prop-
erties that have to be met. The accuracy of the approximation is measured by the
maximum error, R=max|N (g)(�)|, over the interval. The approximation is calculated
over an interval far larger than the actual domain of interest in order to check that the
approximation does not diverge but converges to the asymptote as required in (6′).

To determine the optimal stopping threshold �∗ we proceed as follows. Since the
boundary condition (7) is a 1rst-order-condition for the optimality of �∗ (see Dixit,
1993), we 1rst drop it and impose only (5) at an arbitrarily chosen level �̂. There
exists one and only one economically stable solution of (16) for each �̂ satisfying
condition (5), i.e., F(�̂)=0, and the algorithm converges reliably. 10 Hence, we search
for the optimal level �∗ (e.g. applying a simple search algorithm) where the optimality
condition (7) is also satis1ed.

In order to demonstrate the suitability and accuracy of this algorithm, we draw on
the model presented in Section 2, because we can compare the computed approximation
with the explicit and analytical solution (11). This requires a re-de1nition of N (see
(22)) in order to account for the lack of maintenance:

N (g)(�) = 1=2�2g′′(�) + ag′(�)− rg(�) + �: (22′)

Since (22′) is linear, convergence of the projection method is independent of the initial
guess, thus, we start with the guess g(�) = 0.

Table 2 lists the Chebyshev coe6cients of the analytical solution and of the ap-
proximations for M=25 and 35. The critical level and the value of the free projection
together with the residual R are listed in the header of Table 2. This table shows
that the residuals are of diminishing order of magnitude and the critical level com-
puted by the algorithm is identical to the analytical value up to at least 1fteen digits.

10 This solution corresponds to the decision to operate the machine until �̂ is reached for the 1rst time,
irrespective of the optimality of this strategy.
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Table 2
No maintenance

Analytical solution M = 25 M = 35

�̂ 0.170820393249937 −0.170820393249937 −0.170820393249937
|�̂− �̂∗| 0.0 ¡ 1 × 10−15 ¡ 1 × 10−15

pM−1 −8:078261 × 10−17 −4:070708 × 10−20

R ¡ 1 × 10−16 ¡ 2 × 10−18

c0 79.022113607059 79.022113607059 79.022113607058
c1 47.007651771983 47.007651771983 47.007651771982
c2 5.619348408761 5.619348408761 5.619348408761
c3 −3.207440799833 −3.207440799833 −3.207440799833
c4 1.522617028486 1.522617028486 1.522617028485
c5 −0.614406519018 −0.614406519018 −0.614406519018
c6 0.214690333554 0.214690333554 0.214690333554
c7 −0.065976364635 −0.065976364635 −0.065976364635
c8 0.018062947260 0.018062947260 0.018062947260
c9 −0.004453551505 −0.004453551504 −0.004453551505
c10 0.000997936236 0.000997936236 0.000997936236
c11 −0.000204809337 −0.000204809337 −0.000204809337
c12 0.000038756442 0.000038756442 0.000038756442
c13 −0.000006801339 −0.000006801339 −0.000006801339
c14 0.000001112480 0.000001112480 0.000001112480
c15 −0.000000170359 −0.000000170359 −0.000000170359
c16 0.000000024520 0.000000024520 0.000000024520
c17 −0.000000003329 −0.000000003329 −0.000000003329
c18 0.000000000428 0.000000000428 0.000000000428
c19 −0.000000000052 −0.000000000052 −0.000000000052
c20 0.000000000006 0.000000000006 0.000000000006
c21 −0.000000000001 −0.000000000001 −0.000000000001
c22 0.000000000000 0.000000000000 0.000000000000
c23 0.000000000000 0.000000000000 0.000000000000
c24 0.000000000000 0.000000000000 0.000000000000
c25 0.000000000000 0.000000000000
c26 0.000000000000 0.000000000000
c27 0.000000000000 0.000000000000
c28 0.000000000000 0.000000000000
c29 0.000000000000 0.000000000000
c30 0.000000000000 0.000000000000
c31 0.000000000000 0.000000000000
c32 0.000000000000 0.000000000000
c33 0.000000000000 0.000000000000
c34 0.000000000000 0.000000000000

Chebyshev coe6cients (over the interval [ − 1; 10]) of the analytical solution (11) compared with the
approximation obtained by the projection method for M = 25 and M = 35. The computed critical levels �̂,
their absolute errors, the free projection coe6cient and the maximum error R are listed in the column-headers.

Fig. 5 plots the absolute error versus computing time (again using GNU gcc on an
AMD 1200 MHz PC running SuSE Linux 7.3). It takes only 1:5 s (and a basis of 25
Chebychev polynomials) to compute �∗ up to 14 signi1cant digits accurately. Compared
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Fig. 5. Absolute error of the threshold �̂ for the stopping problem in Section 2 computed by the Chebyshev
projection method for M = 5 to M = 25 versus computing time.

with the 1nite di7erence method, it is 10 digits more accurate and the computational
e7ort is of several orders of magnitude (around 103) less. The convergence of the
approximated value function is of the same order of magnitude.

Finally we test the algorithm with the maintenance problem (12)–(13) for c = 200,
see Table 3. The non-linearity of (16) implies that the projection algorithm has to
solve a system of non-linear equations (25). As a consequence, the convergence is
slower and the number of iterations required depends crucially on the initial guesses
for the value function and �∗. The approximations of the respective value functions are
stable and have su6ciently small residuals. For the maintenance problem the Newton
algorithm inside the collocation method converges up to M=54; the Jacobi matrix is
badly conditioned for higher order polynomials. Since there is no analytical solution for
�∗ the exit threshold �̂54 serves as a benchmark. Fig. 6 plots the absolute deviation of
the exit threshold from �̂54 versus computing time for M=5 to M=53. This illustrates
that the projection method converges reliably, yet due to the non-linearity the computing
time is now one order of magnitude higher than for the pure stopping model: the
approximation for M=53 takes less than 24 s.

5. Optimal maintenance and shutdown – results

The management problem introduced in Section 3 is now investigated – how the
solution is a7ected by variations of parameters – in order to illustrate the workability
of the above sketched algorithm. Fig. 7 shows the value function – setting the cost
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Table 3
Maintenance

M = 25 M = 35

�̂ −0.1794460350381411 −0.1794460360744784
|�̂− �̂54| ¡ 1 × 10−8 ¡ 1 × 10−10

pM−1 5:357081 × 10−7 1:736056 × 10−10

R ¡ 7 × 10−7 ¡ 2 × 10−9

c0 82.164379821594 82.173273023540
c1 48.395313627255 48.403993418998
c2 5.011191370217 5.019260557768
c3 −3.232601206749 −3.225453482366
c4 1.666221173918 1.672255588013
c5 −0.712455059206 −0.707596902328
c6 0.189410838442 0.193142798480
c7 −0.021666476949 −0.018928884326
c8 −0.032434148767 −0.030514755392
c9 0.015786230239 0.017073848005
c10 −0.009684306937 −0.008856771607
c11 −0.000910953079 −0.000400665345
c12 0.000349112815 0.000651563181
c13 −0.001489533145 −0.001316837406
c14 0.000123706407 0.000218963246
c15 −0.000186048468 −0.000135100595
c16 −0.000144022760 −0.000117489761
c17 0.000023993479 0.000037541507
c18 −0.000044955212 −0.000038133095
c19 −0.000004846017 −0.000001435776
c20 −0.000000048893 0.000001669102
c21 −0.000006194736 −0.000005302678
c22 0.000001279959 0.000001462959
c23 −0.000000757151 −0.000000656083
c24 −0.000001007460 −0.000000367655
c25 0.000000230031
c26 −0.000000189382
c27 0.000000023688
c28 0.000000004019
c29 −0.000000025319
c30 0.000000010235
c31 −0.000000005085
c32 −0.000000001117
c33 0.000000001211
c34 −0.000000001103

Chebyshev coe6cients (over the interval [ − 1; 10]) computed with the projection method for M = 25
and 35. The computed critical levels �̂, its absolute deviation from the exit threshold �̂54 (computed with
M = 54 and thus our best guess of �∗), the free projection coe6cient and the maximum error R are listed
in the column-headers.
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Fig. 6. Absolute error of the threshold �̂ resulting from the application of Chebyshev projection method to
the maintenance problem for M=5 to M=53; �̂54 (i.e. for M=54) serves as benchmark for the optimal �∗.

parameter 11 c = 200 (this applies to all subsequent computations) – and compares
this result with the case of no maintenance displayed in Fig. 2 (thus the remaining
parameters are as in Section 2). While value functions and optimal maintenance are
sensitive to model parameters, the critical levels where to abandon the unit are all very
similar and these values of �∗ are tabulated below (Fig. 7). Furthermore, the possibility
of maintenance has little impact on the shutdown decision but increases the value of
an equipment signi1cantly.

Fig. 7 illustrates that the value function shows the asymptotic behavior demanded by
the transversality condition (6′), i.e., very high pro1tability implies that it is unlikely
that this equipment will be eliminated in the near future and its value is therefore
insensitive with respect to the ‘option’ of stopping. However, at lower pro1ts, the value
of a machine that can be eliminated exceeds considerably the value of a machine that
must be kept forever. The di7erence between the two functions has the characteristic
shape of the value of a put option (see Figs. 8 and 9) and can be interpreted as the value
of the real option to eliminate the machine. In contrast to 1nancial options theory this
is not a simple stopping problem where one observes the underlying as an exogenous
random process, instead, the stochastic process (13) is controlled and thus endogenous.
At high pro1t Jows, the value of the real option converges to zero, because nobody
would eliminate the machine, i.e., exercise the put option before long. At low pro1ts,
the real option increases in value. The less the machine is maintained (due to a higher
cost parameter c) the higher is the value of the option to liquidate. This is so because

11 Note that for c¡ 100, maintenance is so cheap that it is ‘economical’ to reverse the natural depreciation,
i.e., to improve the (expected) pro1tability of the machinery, which seems implausible, so that only c¿ 100
are sensible.
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Fig. 7. Value functions of a maintained unit (c = 200) compared with one that cannot be maintained, for
a = −0:1, � = 0:2 and r = 0:1; the optimal level �∗ = −0:1708 without and −0:1794 for maintenance. In
addition, the value functions of equipments that cannot be eliminated (with and without maintenance) are
also plotted.

a lower level of maintenance causes a more pronounced drift of the pro1t Jow towards
the liquidation threshold. For �¡�∗, the put option will be exercised immediately. If
both real options (of the maintained and of the not maintained machine) are in this
region, their values di7er by 1=(2cr3).

Fig. 9 shows the value of the real option for di7erent levels of uncertainty together
with the limiting deterministic case, � = 0. A higher level of uncertainty results, as
expected, in a higher value of the corresponding real option and in a lower value
of �∗.

Finally, optimal maintenance u∗ (see Fig. 10) must be determined from (15). Obvi-
ously, the required di7erentiation of the value function F(�) calculated in Table 3 and
shown in Fig. 7 is derived directly from the Chebyshev interpolation. For � large, the
optimal maintenance converges to the constant strategy u∗=1=(rc), which is optimal if
the machine has to run forever (see (6′)). Therefore, optimal maintenance of a highly
pro1table equipment is insensitive with respect to the degree of uncertainty � and the
depreciation rate a; see Fig. 10. Lower pro1tability reduces maintenance, which stops at
the critical level �∗, where the machine is 1nally scrapped. Higher maintenance costs
result in less maintenance and in an earlier deviation from the constant, asymptotic
strategy.

Higher uncertainty, i.e., a larger �, leads to a lower exit threshold and, thus, to
a higher level of maintenance for low pro1t Jows. However, at higher pro1tability,
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Fig. 8. Value of the real option to eliminate a machine with and without maintenance for c = 200
(a = −0:1; � = 0:2; r = 0:1).
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Fig. 9. Value of the real option to eliminate a machine for di7erent values of �, the critical levels �∗ are
0:0; −0:1794 and −0:3567 for � = 0:0; 0:2 and 0.3; and c = 200, r = 0:1; a = −0:1.
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Fig. 10. Optimal maintenance for di7erent levels of uncertainty and depreciation (c = 200).

uncertainty reduces maintenance. Therefore the impact of uncertainty on optimal main-
tenance can be positive or negative. The reason is that at low pro1tability a higher
level of uncertainty increases the upside chance (the likelihood that the pro1t Jow re-
covers) while the downside risk is limited (the worst situation is that � falls to �∗ and
the machine is eliminated). Therefore, uncertainty justi1es higher maintenance at low
pro1tability. At high pro1tability we face the opposite situation. Due to the common
asymptote, uncertainty increases the downside risk that the pro1t Jow decreases faster
than expected whereas it cannot create an upside chance. The response is an earlier
reduction of maintenance and thus larger depreciation at high pro1tability levels. An
increase in average depreciation per period (i.e., an increase in a) leads to a global
reduction in maintenance (yet approaching the same asymptote).

6. Summary

The purpose of this paper is to draw attention to the fact that standard numeri-
cal procedures for solving di7erential equations are not suitable for treating functional
equations obtained from the Bellman equation of continuous time dynamic program-
ming. The fact that solving these equations requires locating the ‘saddlepoint’ from
the entire family of solution curves causes shooting methods to fail. Finite di7erence
methods tend to converge but very slowly especially if the considered time horizon
is large. Collocation methods, which are introduced to economics in Judd (1992) in
the context of endogenous growth models, o7er a fast and robust alternative. Both,
the restrictions of conventional methods and the suitability of collocation methods (we
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use a projection method based on Chebyshev polynomials), were demonstrated for
the management problem of maintaining and eventually eliminating a pro1t generating
equipment. The presented sensitivity analysis and investigation of parameter variations,
which are typical for many economic applications, underline the requirement for such
fast and reliable algorithms (just recall that solving the simple stopping problem by
the method of 1nite di7erence took above 6h computing time yielding an accuracy of
just four digits).

Acknowledgements

Both authors acknowledge valuable suggestions from Winfried Auzinger, two refer-
ees and the editor, Professor Kenneth Judd.

Appendix A.

A.1. Deterministic

Setting � = 0 the corresponding deterministic (and linear-quadratic) model results:

max
{u(t);T}

∫ T

0
e−rt

(
�(t)− 1

2
cu2(t)

)
dt; (12′)

d�(t)
dt

= a+ u(t); �(0) = �0: (13′)

The de1nition of the Hamiltonian (present value notation, � denotes the costate),

H = �− 1=2cu2 + �(a+ u); (A.1)

gives the necessary and su6cient conditions for optimality (see e.g. Feichtinger
and Hartl, 1986; or LWeonard and Long, 1992):

Hu =−cu+ �= 0; (A.2)

�̇= r�− 1; �(T ) = 0; (A.3)

H (T ) = �(T )− 1=2cu2(T ) + �(T )(a+ u(T )) ⇒ �(T ) = 0: (A.4)

The implication in (A.4), which leads to the determination of the optimal stopping time
T , follows from the transversality condition in (A.3) and from the maximum principle
(A.1), because the optimal maintenance is given by u=�=c. Substitution of this control
into (13′) yields the canonical system of equations

�̇= a+ �=c; �(0) = �0;

�̇= r�− 1; �(T ) = 0: (A.5)
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The system (A.5) can be solved explicitly:

�(t) = �0 + at +
1
cr

[
e−rT

r
(1− ert) + t

]
; (A.6)

�(t) = [1− e−r(T−t)]=r: (A.7)

However, the stopping time T has to be calculated numerically by solving �(T ) = 0.
Eliminating the time t determines optimal maintenance as a function of the state,
u= u(�); which is displayed in Fig. 10.

If we assume an in1nite horizon, i.e., the machine has to operate even at (growing)
losses, the corresponding Bellman equation is

rF = max
u

(
�− 1

2
cu2 + F�(a+ u)

)
= �+ aF� + 1=2F2

�=c; (A.8)

and can be solved analytically. This linear quadratic control model with in1nite planning
horizon has a quadratic value function:

F(�) = k0 + k1�+ 1=2k2�2: (A.9)

Comparing coe6cients (after substitution of the guess (A.9) into (A.8)) determines 12

k0 = a=r2 + 1=(2cr3);

k1 = 1=r;

k2 = 0; (A.10)

so that F(�) = (a=r2) + 1=(2cr3) + (�=r) results (which is equal to the right hand
side of (6′)). This proves that the constant maintenance u = 1=(rc) is optimal in the
deterministic framework if it is impossible to eliminate the machine. For c→∞, u∗ =0,
i.e., the maintenance model approaches the case without maintenance where F(�) =
(a=r2) + (�=r).

A.2. Stochastic

Note that this deterministic result is also a particular solution of (16) even for � �=0.
And in fact, constant maintenance is the optimal strategy if it is impossible to get rid
of the machine: Let � be a stochastic process de1ned by (13) and ' = � + h, with
constant h. Since the planning horizon is in1nite, we can write (see (12)):

F(') = F(�+ h) = max
{u(t)}

E
∫ ∞

0
e−rt

(
�(t) + h− 1

2
cu2(t)

)
dt

=
∫ ∞

0
he−rt dt + max

{u(t)}
E
∫ ∞

0
e−rt

(
�(t)− 1

2
cu2(t)

)
dt

= F(�) +
1
r
h: (A.11)

12 The positive root k2 can be ruled out because it would cause, according to (15), unbounded maintenance
for large � and thus yield an unstable solution.



T. Dangl, F. Wirl / Journal of Economic Dynamics & Control 28 (2004) 1437–1460 1459

Therefore F(�) has the constant slope 1=r, i.e. F(�) = k + �=r, and with (15) we get
constant maintenance u∗ =1=(rc). Substituting into (16) gives k = a=r2 + 1=(2cr3) and
F(�) = (a=r2) + 1=(2cr3) + (�=r), which is the right hand side of (6′). Hence, without
the possibility to eliminate the machine, the value function is independent of � and the
optimal maintenance is independent of both, � and a.

A.3. Finite di7erences

To apply a 1nite di7erence method we have to reformulate the maintenance and
stopping problem into a 1nite horizon problem. If ST is the maturity of the shutdown
option, then the corresponding Bellman equation is

rF = �+ Ft + aF� + 1=2F2
�=c + 1=2�2F��; (16′)

which is now a partial di7erential equation. Consider a discrete grid in the time/state
space with increments Ut and U� = �

√
Ut, and let fi;j denote the valuation at the

grid points, where the indices i and j characterize the location of the point with re-
spect to state and time, respectively. Approximation of the partial derivatives in (16′)
by 1nite di7erences allows working backwards in time using the following iteration
scheme

fi;j−1 = (1− rUt)fi;j + �Ut +
fi+1; j + fi−1; j − 2fi;j

2
+
a
√
Ut

2�
(fi+1; j − fi−1; j)

+
1

8c�2 (fi+1; j − fi−1; j)2: (A.12)

The approximated value function is then given by F(iU�; jUt) = fi;j. If maintenance
is not allowed, the last term on the left hand side of (A.12) has to be dropped.
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